Numerical solution of the one-dimensional saddle point equation of the Ginzburg-Landau Hamiltonian with random temperature

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2004 J. Phys. A: Math. Gen. 374897
(http://iopscience.iop.org/0305-4470/37/17/C01)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.90
The article was downloaded on 02/06/2010 at 17:57

Please note that terms and conditions apply.

Corrigendum

Numerical solution of the one-dimensional saddle point equation of the
 Ginzburg-Landau Hamiltonian with random temperature
 X T Wu and K Yamada 2004 J. Phys. A: Math. Gen. 37 3363-3384

There is an error in the definition of the random temperature distribution (3). It should be given by

$$
\begin{equation*}
p\left(\left\{\tilde{t}_{i}\right\}\right)=\frac{1}{\Delta \sqrt{2 \pi}} \exp \left(-\frac{\tilde{t}_{i}^{2}}{2 \Delta^{2}}\right) \tag{3}
\end{equation*}
$$

It is then consistent with the numerical calculation in section 4. In equations (3), (4), (8), (31), (58), and (59) and the discussion on page $3373, \Delta$ should be replaced by $\sqrt{2} \Delta$ and Δ^{2} should be replaced by $2 \Delta^{2}$. The disorder strength of the site-diluted spin model given by equation (59) should be $\Delta=\sqrt{p(1-p)}$. This error only causes the inconsistency between equation (3) and the numerical calculation in section 4, and does not effect the general conclusions in this paper.

In addition there is a typing error in figures 7,11 and 12 where the title of the vertical axis should be $\xi \rightarrow \xi_{\phi}$.

DOI: 10.1088/0305-4470/37/17/C01

